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Modal analysis of the 0th order nulled phase masks
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A simple modal analysis (MA) method to explain the diffraction process of 0th order nulled phase mask
is presented. In MA, multiple reflections of the grating modes at grating interfaces are considered by
introducing equivalent Fresnel coefficients. Analytical expressions of the diffraction efficiencies and modal
guidelines for the 0th order nulled phase grating design are also presented. The phase mask structure,
which comprises a high-index contrast HfO2 grating and a fused-silica substrate, is optimized using rigorous
coupled-wave analysis around the 800-nm wavelength, after which the modal guideline for cancellation of
the 0th order in a phase mask is verified. The proposed MA method illustrates the inherent physical
mechanism of multiple reflections of the grating modes in the diffraction process, which can help to
analyze and design both low-contrast and high-contrast gratings.
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One important method for fiber Bragg grating (FBG) in-
scription (writing) is to use 0th order nulled phase masks
to fabricate FBGs. This method[1] utilizes the ultraviolet
(UV) beam at normal incidence modulated spatially by
the phase mask grating made of fused silica, after which
the interference of the diffractive 1st and –1st orders ex-
iting from the phase mask forms a periodic pattern, with
half the phase mask grating pitch in the photosensitive
fiber immediately behind the phase mask. Then, with
the use of ultrahigh-peak-power femtosecond (fs) laser
radiation for the induction of index change in dielectric
materials to produce waveguide structure[2], FBGs are
written in standard Ge-doped fiber with pulsed 800-nm
laser radiation using a deep-etch silica phase mask[3].
However, previous works[4,5] present evidence that stan-
dard fused-silica binary phase masks cannot extinguish
the 0th order, where the period is only slightly larger
than the exposure wavelength. In addition, the existence
of the 0th transmitted order has an unfavorable effect
on the formation of a sharp interference pattern with
pulsed 800-nm laser when a standard fused-silica binary
grating is used. This is because the period of the binary
phase mask is around 1 060 nm, which corresponds to
the Bragg resonance wavelength[1].

The simplified modal method is an important tool for
analyzing low-contrast gratings[6−9], in which the reflec-
tion at grating interfaces is neglected. Clausnitzer et
al.[10] introduced the Fresnel reflection at the interfaces
into the simplified modal method using a symmetrical
encapsulated grating similar to a standard Fabry-Perot
(F-P) cavity. However, only the reflection of one mode
is considered in a previous study[10]. For a symmetrical
high contrast grating, previous works[11,12] propose an
analysis and present an explanation based on a coupled
Bloch-mode insight. As far as we know, modal anal-
ysis (MA) based on the equivalent F-P interference of
dual-mode reflection for an asymmetrical high-contrast
grating has yet to be conducted in any study.

In this letter, we propose a new MA method based on

the simplified modal method[6] and multi-reflection in-
terference effect of propagating grating modes, thus pro-
viding a clear physical image of the diffraction process
in a high-contrast phase grating. Analytical expressions
of the diffraction efficiencies and modal guidelines for
the 0th order nulled phase grating design are provided.
Rigorous coupled-wave analysis (RCWA)[13] is used to
optimize the phase mask structure. The optimized high-
contrast phase grating has an extremely low diffraction
efficiency of the 0th order of less than 0.1% under normal
incidence, with an 800-nm fs source. The results using
RCWA coincide with those from the modal guideline for
cancellation of the 0th order in a phase mask. Meanwhile,
the effects of incident angle and incident wavelength on
the phase mask performance are also considered. Some
discussions and conclusions are presented.

Figure 1 shows the schematic of a phase mask structure
illuminated under normal incidence at a wavelength λ of
800 nm; it is composed of a substrate with index n1 (the
incidence medium) and a binary grating of thickness h,
period Λ, ridge width b, index nr, groove width g, and
index ng. Duty cycle f is defined as the ratio of ridge
width b to period Λ. Unlike the standard fused-silica bi-
nary phase mask, the phase mask proposed in this letter
comprises a higher index contrast grating on a fused-
silica substrate. The corresponding refractive indices of
the substrate and the groove are 1.45332 and 1.8946 at
800 nm, respectively. The ratio of the grating period
to the wavelength should only be between 1 and 2 to
ensure only three output diffractive orders, namely, 0th,
1st, and –1st. Moreover, only the 0th and 1st diffraction
efficiencies should be considered because the efficiencies
of the 1st and –1st diffractive orders are always the same
under normal incidence because of their symmetry, i.e.,
θ1=θ−1.

Although the model method is first developed by Collin
et al.[14,15], it is Botten[16] who first applied it to di-
electric gratings. This model method provides a clear
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Fig. 1. Schematic of the 0th order nulled phase mask struc-
ture consisting of a fused-silica substrate and a higher index
contrast binary grating.

Fig. 2. Schematic illustration of multiple reflections at grat-
ing interfaces and the equivalent plane-parallel plate structure
of a phase mask grating; θin is the incident angle, nm

eff is the
effective index of the mth grating mode, and n

rp

eff
and n

tp

eff

are the effective indices for the pth reflection and transmis-
sion order, respectively.

physical insight into the diffraction process by taking
the modes of a periodic planar waveguide as the grat-
ing modes. When the grating period is comparable to
the incident wavelength, only a few propagating grat-
ing modes dominate the diffraction process; thus, the
diffraction phenomenon becomes comprehensible[17]. As
established, the electric field of the mth grating mode
inside the grating area has a periodic distribution um(x)
in the x-direction, propagating along the z-direction with
a propagation constant k0n

m
eff . Here, nm

eff is the effective
index of the mth grating mode, which can be determined
by solving the TE mode dispersion equation[16]
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where k0 is the wave number in vacuum (k0=2π/λ), and
nr and ng are the refractive indices of the grating ridge
and groove, respectively. Energy exchange between the
incident wave and the grating modes in the x-direction
is determined by the overlap integral as[6]
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where um(x) and Eyin(x) are the electric fields of the
mth grating mode and the incident wave, respectively.
When the grating period is slightly larger than the in-
cident wavelength, such a grating supports three propa-
gating modes (modes 0, 1, and 2) but two symmetrical
modes (modes 0 and 2) can only be excited under normal
incidence, which is confirmed by the overlap integral in
Eq. (2). Thus, the field at the incident interface of the
grating can be expressed as[18]
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where am is the complex amplitude of the mth grating
mode inside the grating area, and tin/m is discussed in
detail in the subsequent sections in this letter.

Different from the simplified modal method, wherein
the reflection of the grating modes at grating interfaces is
neglected due to the low index contrast of the grating[6],
the binary grating in this case is a high-index contrast
grating, in which the reflections at the grating inter-
faces play an important role in the diffraction process.
As such, the diffraction efficiency functions of the 0th
and 1st orders are no longer in a simple sine or cosine
form, and the diffraction process is also not as simple as
a Mach-Zehnder interferometer[6]. Multiple reflections
at grating interfaces in Fig. 2 must be considered to
derive the diffraction efficiency expressions. The final
diffraction efficiency expressions are similar to the re-
sults of the multi-beam interference of a parallel plane
plate. The detailed derivation of diffraction efficiency is
presented below.

For the mth propagating grating mode, the incident
interface can be equivalent to an interface of two medi-
ums with effective indices nin

eff and nm
eff . Reflection and

transmission coefficients of the mth grating mode at the
incident interface can be simply calculated by Fresnel
coefficients given by

rin/m =
nin

eff − nm
eff

nin
eff + nm

eff

=
n1 cos θin − nm

eff

n1 cos θin + nm
eff

, (4)

tin/m =
2nin

eff

nin
eff + nm

eff

=
2n1 cos θin

n1 cos θin + nm
eff

, (5)

where n1 is the refractive index of incidence medium.
The additional phases of π and 0 at the interfaces are
determined by the sign of reflection coefficients. The
phase of π means that the beam propagates from an op-
tically thinner medium to an optically denser medium,
and phase of 0 is the reverse. Meanwhile, nin

eff is defined
as the effective index of the incident wave similar with
the concept of admittance in thin film optics, equals the
perpendicular component of its material refractive index.
After multiple reflections and transmissions at the emer-
gent interfaces, the propagating grating modes finally
couple out to the reflection and transmission diffractive
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orders. Similarly, the effective index of the pth reflection
and transmission order (Fig. 2) can be defined as

nrp
eff =

√

n2
1 − (kxp/k0)2, (6)

ntp
eff =

√

n2
2 − (kxp/k0)2, (7)

where kxp is determined by the grating equation

kxp = k0 [n1 sin(θin) + p(λ/Λ)] . (8)

By introducing effective indices of diffractive orders,
reflection and transmission coefficients of the propagat-
ing grating modes at the emergent interfaces can be sim-
ilarly defined by Fresnel coefficients. Here, rm/rp and
tm/rp are the reflection and transmission coefficients of
the mth grating mode to the pth reflected order at the
top interface, respectively. Meanwhile, rm/tp and tm/tp

are the reflection and transmission coefficients of themth
grating mode to the pth transmitted order at the bottom
interface, respectively.

The reflections of the two modes at the interfaces are
independent of each other as the phase mask grating
works in a far-off-resonance condition, wherein the cou-
pling between the two propagating modes is extremely
weak. Analogous to the multi-beam interference of a
plane-parallel plate, complex amplitudes of the mth grat-
ing mode contributing to the pth reflection and transmis-
sion diffractive order at the emergent interfaces have the
forms given below by considering multiple reflections of
the grating modes

arp
m = ain

m

(
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tin/mtm/rprm/tpe

−2jδ

1 − rm/tprm/rpe−2jδ

)

, (9)
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)

, (10)

where δ=nm
effk0h is the phase at the interface of z = h.

Therefore, field distributions of the pth reflection and
transmission diffractive orders in x-direction at the emer-
gent interfaces can be written as

Erp
yout(x) = arp

0 u0(x) + arp
2 u2(x) (z=0

−

), (11)

E tp
yout(x) = atp

0 u0(x) + atp
2 u2(x) (z=h+). (12)

Complex amplitudes of the pth diffractive orders can
be derived through the integration of the product of exp
(−jkxpx) and Eqs. (11) and (12) within a grating period
expressed as
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1

Λ
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The diffraction efficiency of the pth reflection or trans-
mission orders is defined by following the ratio of energy
influx given by

ηp =
np

eff |Ap|
2

n1 cos(θin)
, (15)

where n
p
eff is the effective index of the pth diffractive or-

der defined in Eqs. (6) and (7).
According to Eq. (14), the complex amplitude of the

0th transmitted order can be written as (kx0=0)

At0 =
1

Λ

Λ
∫

0

[at0
0 u0(x) + at0

2 u2(x)]dx. (16)

Here, A0
t0 and A2

t0 are the contributions of mode 0 and
mode 2 to the 0th transmitted order, respectively, and
are expressed as

A0
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1

Λ
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2 u2(x)dx. (18)

According to the principle of destructive interference, if
the conditions below are fulfilled
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∆ψ = phase(A2
t0) − phase(A0
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= (2m+ 1)π, m = 0, 1, 2 ..., (19)

the diffraction efficiency of the 0th transmitted order is
0. This can be used as the guideline for the design of
a 0th order nulled phase mask, from which approximate
grating parameters can be obtained.

The optimum phase mask structure has a grating pe-
riod Λ of 1 105, depth h of 466, and duty cycle f of 0.34
using a RCWA algorithm for the TE polarization. Mean-
while, the slight 0th order intensity (<0.1%) and the 1st
order intensity are larger than 42.9%, with quite a broad
range of structure parameters and grating period ranging
from 1 055 to 1 150 nm. Given this condition, the duty
cycle from 0.312 to 0.385, and groove depth from 459 to
474 nm are also obtained. In comparison, the diffraction
efficiency of the transmitted 0th order is not smaller than
13.4% with optimized parameters for the standard fused-
silica phase mask.

Under normal incidence, cos(α0Λ) in Eq. (1) is 1. By
solving the TE mode dispersion equation, effective in-
dices of the three propagating modes are obtained as fol-
lows: n0

eff =1.744, n1
eff= 1.264, and n2

eff =0.8 986, with
the optimum parameters of Λ=1 105 nm and f=0.34.
The normalized mode profiles, which are calculated ac-
cording to the expression of u(x) in a previous work[16],
are shown in Fig. 3. As can be seen, these modes have the
same period with the phase mask grating; specifically,
mode 0 and mode 2 are symmetrical (even), while mode
1 is asymmetrical (odd).

With the effective indices of the three propagating
modes, energy exchanges between modes 0 and 2 and
the incident waves at 0.4869 and 0.5032, respectively. In
the meantime, the overlap integral of mode 1 with the in-
cident wave is close to 0 according to Eq. (2). Therefore,
only the two symmetrical modes can be excited under
normal incidence.
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Fig. 3. Normalized mode profiles of the first three modes for
the TE polarization (Ey).

Fig. 4. Diffraction efficiencies of the transmission 0th and 1st
diffractive orders versus groove depth calculated by RCWA
(solid curves) and the MA method (dashed curves), respec-
tively (Λ=1 105 nm and f=0.34).

After multiple reflections at grating interfaces, the two
propagating grating modes finally couple out to reflection
and transmission diffractive orders. The contributions
of mode 0 and mode 2 to the 0th transmitted order A0

t0
and A2

t0 are defined in Eqs. (17) and (18), respectively.
Their amplitudes and phases are shown in Table 1 with
the optimum grating depth of 466 nm.

Table 1. Amplitudes and Phases of A
0

t0 and A
2

t0 and
the Phase Difference between A

0

t0 and A
2

t0

A2
t0 A0

t0

Am
t0 –0.5890 + 0.0896i 0.5734 – 0.0601i

| Am
t0 | 0.5958 0.5765

phase(Am
t0) (rad) 2.9907 –0.1045

∆ψ (rad) 3.0952

Table 1 clearly shows that the amplitude A2
t0 is almost

equal to that of A0
t0, and that the phase difference be-

tween A0
t0 and A2

t0 is approximate to π. Results in Table
1 are in accordance with the conditions in Eq. (19),
verifying the guideline as sufficiently effective to be used
in designing 0th order nulled phase masks.

According to Eq. (15), the diffraction efficiencies of
the 0th and 1st transmission diffractive orders varying
with the grating depth h are calculated (Fig. 4). As
can be seen in the figure, the outline of the diffraction
efficiency curve of the proposed modal method agrees
with that of the RCWA. At the optimum groove depth

of 466 nm, the diffraction efficiency of the transmission
0th order is 0.076% and that of the transmission 1st
order has a maximum value of 41.1%, showing a slight
difference of 2.7% with the maximum efficiency of the
transmission 1st order by RCWA. This slight difference
between the diffraction efficiencies of RCWA and the
proposed MA method can be attributed to the higher or-
der evanescent modes, wherein a fraction of the incident
energy is neglected in the MA method. The neglected
cross-coupling between the two propagating modes also
plays a role in the diffraction efficiencies. Moreover, with
the increase of the refractive index contrast between the
grating ridge and grating groove, the influence of cross-
coupling on the grating diffraction behavior gradually
increases. The cross-coupling between the two propagat-
ing modes can be obtained by a reflection matrix[11] or
scattering matrix[17].

It should be noted that in the simplified MA method,
the diffraction efficiencies of the 0th and 1st orders ver-
sus the groove depth should obey a standard sine or
cosine form. Therefore, multiple reflections at grating
interfaces should be a physical cause for explaining the
non-sine or non-cosine form (Fig. 4).

A phase mask grating with a certain incident angle
range is necessary for practical use. Figure 5(a) shows
the diffraction efficiencies of the transmission 0th and
1st orders with varying incident angles at a wavelength
of 800 nm using RCWA and the proposed MA method.
In the RCWA results, as the incident angle is away from
normal incidence, the diffraction efficiency of the 0th
order increases gradually, whereas, the 1st order is just
the reverse. Within the incident angle range from –9.5◦

to 15.5◦, the diffraction efficiency of the transmission
0th order is always less than 0.1%, whereas, that of the
1st order is more than 40%, making the high-index con-
trast grating on a fused silica substrate a good 0th order
nulled phase mask. The results from the proposed MA
method are close to those obtained from RCWA within
the incident angle range of –5◦ to 5◦. However, when the
incident angle is larger than 5◦, the difference between
the two results increases rapidly especially for the 0th
order. The main cause of the increasing difference is
the emergence of the asymmetrical mode 1 due to the
deviation from normal incidence. Given that the inci-
dent fs laser has a wide wavelength range, the effect
of wavelength shift on grating performance would be
an important factor to consider. The variations of the
diffraction efficiencies of the transmission 0th and 1st
orders with the incident wavelength under normal inci-
dence are shown in Fig. 5(b), which clearly shows that
the trend of the diffraction efficiency curves from RCWA
and the MA method are almost the same. The varia-
tion of the difference between the two results is low at
just over 81-nm spectral bandwidth. Therefore, the MA
method is also useful for analyzing the wideband prop-
erty of gratings, a topic that shall be discussed in detail
in future studies. The difference may be caused by the
neglected higher order evanescent modes and the cross-
coupling between the two propagating modes mentioned
above. As the incident wavelength deviates from the
central wavelength of 800 nm, the diffraction efficiency
of the 0th order increases gradually. Then, within an 81-
nm spectral bandwidth (wavelength ranging from 760 to
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Fig. 5. Diffraction efficiencies of the 0th and 1st diffractive
orders as functions of (a) incident angle and (b) incident wave-
length using RCWA and the MA method.

841 nm), the diffraction efficiency of the transmission
1st order is always over 42.1%, whereas, that of the trans-
mission 0th order is no more than 1%, thus meeting the
requirement of a 0th order nulled phase mask to function
as a good wideband beam splitter.

In conclusion, we present a new MA method, which
considers multiple reflections of propagating grating
modes and provides a clear physical picture of the
diffraction process in a phase mask grating. The mech-
anism of cancellation of the 0th transmitted order is
analyzed to provide a modal guideline for the 0th order
nulled phase grating design. The optimization design
of a 0th order nulled phase mask structure comprising
a high-index contrast HfO2 grating and a fused-silica
substrate is also presented. The broad period range of
the phase mask grating enables the high peak reflectivity
from 1 530 to 1 560 nm of FBGs. The RCWA results
verify the modal guideline for cancellation of the 0th or-
der in a phase mask. This view of multiple reflections of
the grating modes at grating interfaces reflects inherent
physical mechanism and analytical expressions can be
used to analyze and design other kinds of gratings in the

future[19].
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